fnis) LIEGE

EEEEEEEEEEEEEEEEE

Unconstrained Monotonic
Neural Networks

Accepted @ Neural Information Processing Systems 2019

Benelearn 2019

Density Estimation ©

Density estimation aims at estimating the pdf of underlying data from an
iid dataset.

Applications:

e Anomaly Detection.
e Out Of Distribution detection.

e Sampling.

2/ 15

Change of Variables Theorem (1)

Given a random variable Z and a bijective function f, how does the
density of X = f(Z) behave in terms of p(z) and f?

3715

Change of Variables Theorem (1)

Given a random variable Z and a bijective function f, how does the
density of X = f(Z) behave in terms of p(z) and f?

Assume p(z) is a uniformely distributed unit cube in R?, and x = f(z) = 2z.

3715

Change of Variables Theorem (1)

Given a random variable Z and a bijective function f, how does the
density of X = f(Z) behave in terms of p(z) and f?

Assume p(z) is a uniformely distributed unit cube in R?, and x = f(z) = 2z.

2 0 0

p(x = f(z)) = p(z)%c = p(z)3, where § = |det 0 is the
2

0 2
0 O

determinant of the linear transformation f.

3715

https://joerihermans.com/talks/ffjord/

Change of Variables Theorem (2)

What if the transformation is non linear?

e The Jacobian J¢(z) of x = f(z) represents i
the infinitesimal linear transformation in the

neighbourhood of z.

4715

https://www.lesswrong.com/posts/KKwv9kcQz29vqPLAD/a-primer-on-matrix-calculus-part-2-jacobians-and-other-fun

Change of Variables Theorem (2)

What if the transformation is non linear?

e The Jacobian J¢(z) of x = f(z) represents
the infinitesimal linear transformation in the

neighbourhood of z.

« If the function is bijective map then the mass must be conserved locally.

Therefore, we can compute the local change of density as

p(x) = p(z) |det J;(z)| .

4715

https://www.lesswrong.com/posts/KKwv9kcQz29vqPLAD/a-primer-on-matrix-calculus-part-2-jacobians-and-other-fun

Change of Variables Theorem (3)

The combination of the right bijective map and any
base distribution allows to represent any continuous
random variable.

Change of Variables Theorem (3)

The combination of the right bijective map and any
base distribution allows to represent any continuous
random variable.

p(x;0) = p(z = g(x;0)) |det J,(x;0)|, g(.;0) aneural network.

e The bijective function takes in samples and maps them to noise.

e This process is refered as normalization if the noise distribution is normal.

—

Density Estimation

Change of Variables Theorem (3)

The combination of the right bijective map and any
base distribution allows to represent any continuous
random variable.

<__

Sampling

—4 0 4

Once learned, the function can be inverted in order to generate samples.

Bijectivity with Neural Nets? &
e |21 .. zg]=g([z1 ... x4]). gcanbeaNN.

« gis autoregressive if it can be decomposed as: z; = g;([ml wz])

e If the g; are invertible with respect to x;Vi, g is bijective.

6/ 15

Bijectivity with Neural Nets? &

e |21 .. zg]=g([z1 ... x4]). gcanbeaNN.
« gis autoregressive if it can be decomposed as: z; = g;([ml wl])

e If the g; are invertible with respect to x;Vi, g is bijective.

The determinant of the Jacobian can be efficiently computed.

The Jacobian of an autoregressive tranformation has the following form:

o1 o1 o1 O0g1 0 0
8%1 8262 8$3 3%1
J (X) _ | 9¢2 092 0 | __ | 92 Og2 0
g o o0z 0xa 0x3 _ 0x1 0z)
I_ 993 093 093 J I-

093 993 093 J
6331 8902 63)3 aml 8%2 8$3

6/ 15

Bijectivity with Neural Nets? &

e |21 .. zg]=g([z1 ... x4]). gcanbeaNN.
« gis autoregressive if it can be decomposed as: z; = g;([ml wl])

e If the g; are invertible with respect to x;Vi, g is bijective.
The determinant of the Jacobian can be efficiently computed.
The Jacobian of an autoregressive tranformation has the following form:
9 i) 9 9
o Tr, O gy 00
Jy(x) = 02 022 O | _ [d2 9 g | .

8&31 8%2 3%‘3 5:121 8:E2
0g3 dgs3 Ogs J |_393 0g3 0g3 J
o0x1 0xo Ors

aml 8%2 8$3

Chain Rule

An autoregressive density estimator learns the chain rule's factors:
p(x) = p(z1) I op(ai| @1, ooy Tio1)

6/ 15

Example: Masked Autoregressive
Networks

ldea: Autoregressive Networks combined with linear transformations.

* 21 =01 X X1+ M1

° 2z, = ai(acl, ...,:Ei_l) X T; + ,ui(azl, ...,xi_l)

Example: Masked Autoregressive
Networks

ldea: Autoregressive Networks combined with linear transformations.

* 21 =01 X X1+ M1

° 2z, = ai(acl, ...,aci_l) X T; + ,ui(azl, ...,wi_l)

Invertible?
cai=gt (e z]) =g (@) = B
o I, = z_u([wl xz—l])

7/15

Example: Masked Autoregressive
Networks

ldea: Autoregressive Networks combined with linear transformations.

But linear transformations are not very expressive:

8/ 15

Monotonic Transformations

How can we enforce the monotonicity of a function modeled by a
neural network

UMNN: Unconstrained Monotonic Neural Network

Our solution: To model and integrate the derivative.

The only constraint is on the output value which
must be of constant sign (e.g. positive).

3f(x)
)

This can be achieved by applying an exponential on
the output neuron.

] L(9,y)

8/ 15

Learning of UMNN &
How can we backward through the numerical integrator?

By keeping track of all the computations and
building the corresponding computation graph.

9/15

Learning of UMNN &

How can we backward through the numerical integrator?

[Error l&]

. -"‘-.I Out of memory.

By keeping track of all the computations and
building the corresponding computation graph.

10 / 15

Learning of UMNN &

How can we backward through the numerical integrator?

By thanking Leibniz for his rule and applying it.

PP

1 L(Y,y)

i

11/ 15

Learning of UMNN &

How can we backward through the numerical integrator?

By thanking Leibniz for his rule and applying it.

PP

L(9,y)

l

11/ 15

Density Estimation with UMNN:
UMNN-MAF

Normalizing flow UMNN-MAF UMNN
X
(S l ______ \
s)
s
| | | ! |
— | |
| -)

~ _- - = = = _—_ —- —- = =

N <+ 09

Density Estimation with UMNN:
UMNN-MAF

Normalizing flow UMNN-MAF UMNN
X
R l------ \ X3
&) pmmmmmees |
| .- \
: | e e W N R A —— \l
G

b ._[aQo)
1Clo10)n

~ _- - = = =

N <+ 09

The Jacobian has the following form:

ol 32;; fi(z1) 0 0

9z, 0z 0
)) 3¢ oF, OF,

OF, OF, O0F3 .
01 02 Oz3 01 0o f3 ({173, L1, 272)

Experimental Results

Toy Problems

Learnt by maximum likelihood on

X~p(x;6) plx;6) the train samples.

Data dimensionality is 2.

Multimodality.

Discontinuity.

13/ 15

Experimental Results

MNIST

e Learnt by maximum likelihood on the training samples.

e Data dimensionality is 784.

o Samples are generated by sampling noise and inverting the model.

e The model has no knowledge about the structure of the images, i.e.:
p(x) = p(z1, ..., z781) = p(@1)I5p(zi|21, .. 1)

Take Home Messages

* Any monotonic function can be modeled by a neural network that

represents the function derivative,

e The Backward pass is memory efficient thanks to the Leibniz rule.

« UMNN can be used as a building block of autoregressive bijective maps

and provide a state of the art density estimator,

L(9,y)

x~ p(x; 6) p(x; 6) Data

15/ 15

Fin

Experimental Results

Density Estimation Benchmarks

Dataset POWER GAS HEPMASS MINIBOONE BSDS300 MNIST
RealNVP - Dinh et al. [2017] —0.174+. 01 —8.331.14 18.714 g2 13.554 49 —153.2841.78 -

(a) Glow - Kingma and Dhariwal [2018] —0.174+ .01 —8.154 40 19.924 08 11.354 07 —155.07+ 03 -
FFJORD - Grathwohl et al. [2018] —0.461.01 —8..~"')9:|:‘12 14.92, ,s 10.43, ,, _157'40j:.19
MADE - Germain et al. [2015] 3.084 03 —3.564+ 04 20.984+ 02 15.594 50 —148.854 28 2.04+ 01

(b) MAF - Papamakarios et al. [2017] —0.244 o; —10.084 o2 17.704 o2 11.754 44 —155.694 25 1.894 o1
TAN - Oliva et al. [2018] —0.60, ,, —12.06, 13.78, ,, 11.01, ,, —159.80, _ 1.19
NAF - Huang et al. [2018] —0.62+ 01 —11.964 33 15.094+ 40 8.86, ;. —157.731 30 -

(c) B-NAF - De Cao et al. [2019] —0.61+ 01 —12.06, o 14.714 35 8.95+.07 —157.36+.03 -
SOS - Jaini et al. [2019] —0.604 01 —11.994 41 15.154 1 8.904 11 —157.484 a1 1.81
UMNN-MAF (ours) —0.63, =~ —10.89+7 13.99, 5, 9.67113 —157.98, 1.13,

e Learnt by maximum likelihood on the training samples.

15/ 15

Experimental Results

Density Estimation Benchmarks

Dataset POWER GAS HEPMASS MINIBOONE BSDS300 MNIST
RealNVP - Dinh et al. [2017] —0.174+. 01 —8.331.14 18.714 g2 13.554 49 —153.2841.78 -

(a) Glow - Kingma and Dhariwal [2018] —0.174+ .01 —8.154 40 19.924 08 11.354 07 —155.07+ 03 -
FFJORD - Grathwohl et al. [2018] _0'461.01 _8'59:|:.12 14.92, ,s 10.43, ,, _157'40:|:.19
MADE - Germain et al. [2015] 3.084 03 —3.564 04 20.984+ 02 15.594 50 —148.854 258 2.04+ 01

(b) MAF - Papamakarios et al. [2017] —0.244 g7 —10.084 o2 17.704 02 11.754 44 —155.694 25 1.894 o1
TAN - Oliva et al. [2018] —0.60, ,, —12.06, 13.78, ., 11.01, ,, —159.80, _ 1.19
NAF - Huang et al. [2018] —0.62+ 01 —11.964 33 15.094 40 8.86, ;. —157.731 30 -

(c) B-NAF - De Cao et al. [2019] —0.614.01 —12.06, ,, 14.71+.38 8.95t.07 —157.36+.03 -
SOS - Jaini et al. [2019] —0.604 01 —11.994 41 15.154 .1 8.904 .11 —157.484 41 1.81
UMNN-MAF (ours) —0.63, =~ —10.89:7 13.99, ,; 9.67115 —157.98 1.18, .,

e Learnt by maximum likelihood on the training samples.

15/ 15

Experimental Results

Density Estimation Benchmarks

Dataset POWER GAS HEPMASS MINIBOONE BSDS300 MNIST
RealNVP - Dinh et al. [2017] —0.174+.01 —8.334.14 18.714 02 13.554+ 40 —153.2841.78 -

(a) Glow - Kingma and Dhariwal [2018] —0.174+ 01 —8.154 40 19.924 05 11.354 07 —155.074 .03 -
FFJORD - Grathwohl et al. [2018] —0.46, —8.59, . 14.92, ., 10.43, ,, —157.40 .

MADE - Germain et al. [2015] 3.084 03 —3.564+.04 20.984 02 15.594 50 —148.854 25 2.04+ o1
(b) MAF - Papamakarios et al. [2017] —0.244 o1 —10.084 g2 17.704 o2 11.754 44 —155.694 28 1.894 o1
TAN - Oliva et al. [2018) —0.60, ,, —12.06, 13.78, ., 11.01, ,, —159.80 . 1.19
NAF - Huang et al. [2018] —0.62+.01 —11.964 33 15.094+ 40 8.86, ;. —157.734 30 -

(c) B-NAF - De Cao et al. [2019] —0.614.01 —12.06, ,, 14.71+.38 8.95t.07 —157.36+.03 -
SOS - Jaini et al. [2019] —0.604 01 —11.994 41 15.154 .1 8.904 .11 —157.484 41 1.81
UMNN-MAF (ours) —0.63, . —10.8947 13.99, ,; 9.67413 —157.98 1.13, .,

e Learnt by maximum likelihood on the training samples.

15/ 15

Monotonic Transformations

How can we build a 1D invertible function? Monotonic transformations.

How can we enforce the monotonicity of a function modeled by a
neural network ?

Possible solution: Strictly positive weights
and monotonic activation functions.

0.6

But it restrains the architectural choice.

f(x)

0.2 4

0.0

15/ 15

