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Density Estimation �

Density estimation aims at estimating the pdf of underlying data from an
iid dataset.

Applications:

Anomaly Detection.

Out Of Distribution detection.

Sampling.
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Change of Variables Theorem (1)
Given a random variable  and a bijective function , how does the

density of  behave in terms of  and ?

Z f

X = f(Z) p(z) f
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Change of Variables Theorem (1)
Given a random variable  and a bijective function , how does the

density of  behave in terms of  and ?

Assume  is a uniformely distributed unit cube in , and .

The total probability mass must be conserved, therefore 

 where  is the

determinant of the linear transformation .

Z f

X = f(Z) p(z) f

p(z) R3 x = f(z) = 2z
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The Jacobian  of  represents
the in�nitesimal linear transformation in the
neighbourhood of .

Change of Variables Theorem (2)
What if the transformation is non linear?

J  (z)f x = f(z)

z

―――
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The Jacobian  of  represents
the in�nitesimal linear transformation in the
neighbourhood of .

Change of Variables Theorem (2)
What if the transformation is non linear?

If the function is bijective map then the mass must be conserved locally.

Therefore, we can compute the local change of density as

J  (z)f x = f(z)

z

―――
https://www.lesswrong.com/posts/KKwv9kcQz29vqPLAD/a-primer-on-matrix-calculus-part-2-jacobians-and-other-fun

p(x) = p(z) detJ  (z) .∣ f ∣−1
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Change of Variables Theorem (3)

The combination of the right bijective map and any
base distribution allows to represent any continuous

random variable.

5 / 15



Density Estimation

Change of Variables Theorem (3)

The combination of the right bijective map and any
base distribution allows to represent any continuous

random variable.

 a neural network.

The bijective function takes in samples and maps them to noise.

This process is refered as normalization if the noise distribution is normal.

p(x; θ) = p(z = g(x; θ)) detJ (x; θ) , g(.; θ)∣ g ∣
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Sampling

Change of Variables Theorem (3)

The combination of the right bijective map and any
base distribution allows to represent any continuous

random variable.

Once learned, the function can be inverted in order to generate samples.
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,  can be a NN.

 is autoregressive if it can be decomposed as: 

If the  are invertible with respect to ,  is bijective.

Bijectivity with Neural Nets? �

   = g(    )[z  1 ... z  d] [x  1 ... x  d] g

g z  = g  (    )i i [x  1 ... x  i]

g  i x  ∀ii g
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 is autoregressive if it can be decomposed as: 

If the  are invertible with respect to ,  is bijective.

Bijectivity with Neural Nets? �

The determinant of the Jacobian can be e�ciently computed.

The Jacobian of an autoregressive tranformation has the following form:

Chain Rule

An autoregressive density estimator learns the chain rule's factors: 
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p(x) = p(x  )Π  p(x  ∣x  , ...,x  ).1 i=2
d

i 1 i−1
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Example: Masked Autoregressive
Networks

Idea: Autoregressive Networks combined with linear transformations.

z  = σ  × x  + μ  1 1 1 1

z  = σ  (x  , ...,x  ) × x  + μ  (x  , ...,x  )i i 1 i−1 i i 1 i−1
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Example: Masked Autoregressive
Networks

Idea: Autoregressive Networks combined with linear transformations.

Invertible?

z  = σ  × x  + μ  1 1 1 1

z  = σ  (x  , ...,x  ) × x  + μ  (x  , ...,x  )i i 1 i−1 i i 1 i−1

x  = g  (    ) = g  (z  ) =  1 1
−1 [z  1 ... z  d] 1

−1
1 σ  1

(z  −μ  )1 1

x  =  i
σ  (    )i [x  1 ... x  i−1]

z  −μ  (    )i i [x  1 ... x  i−1]
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Example: Masked Autoregressive
Networks

Idea: Autoregressive Networks combined with linear transformations.

But linear transformations are not very expressive:
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The only constraint is on the output value which
must be of constant sign (e.g. positive).

This can be achieved by applying an exponential on
the output neuron.

Monotonic Transformations
How can we enforce the monotonicity of a function modeled by a
neural network

UMNN: Unconstrained Monotonic Neural Network

Our solution: To model and integrate the derivative.
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By keeping track of all the computations and
building the corresponding computation graph.

Learning of UMNN �
How can we backward through the numerical integrator?
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By thanking Leibniz for his rule and applying it.

Learning of UMNN �
How can we backward through the numerical integrator?

  f(t;ω)dt = f(b(ω);ω)  b(ω) − f(a(ω);ω)  a(ω) +   f(t;ω)dtdω
d (∫

a(ω)
b(ω) ) dω

d
dω
d ∫

a(ω)
b(ω)

∂ω
∂
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Density Estimation with UMNN:
UMNN-MAF
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Density Estimation with UMNN:
UMNN-MAF

The Jacobian has the following form: 
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Toy Problems
Learnt by maximum likelihood on
the train samples.

Data dimensionality is .

Multimodality.

Discontinuity.

Experimental Results

2
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MNIST

Experimental Results

Learnt by maximum likelihood on the training samples.

Data dimensionality is .

Samples are generated by sampling noise and inverting the model.

The model has no knowledge about the structure of the images, i.e.: 

784

p(x) = p(x  , ...,x  ) = p(x  )Π  p(x  ∣x  , ...,x  )1 784 1 i=2
784

i 1 i−1
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Take Home Messages
Any monotonic function can be modeled by a neural network that
represents the function derivative.

The Backward pass is memory e�cient thanks to the Leibniz rule.

UMNN can be used as a building block of autoregressive bijective maps
and provide a state of the art density estimator.
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Density Estimation Benchmarks

Experimental Results

Learnt by maximum likelihood on the training samples.

15 / 15



Density Estimation Benchmarks

Experimental Results

Learnt by maximum likelihood on the training samples.

15 / 15



Density Estimation Benchmarks

Experimental Results

Learnt by maximum likelihood on the training samples.

15 / 15



Possible solution: Strictly positive weights
and monotonic activation functions.

But it restrains the architectural choice.

Monotonic Transformations
How can we build a 1D invertible function? Monotonic transformations.

How can we enforce the monotonicity of a function modeled by a
neural network ?
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